FANDOM


Ejercicios:

Sintaxis Matlab Determinar cuales objetos (vector/matriz) entregan las siguientes lineas de Matlab

>a=[3 2 1]

a = 3 2 1

>b=[4 2 5 2 ]'

b =

4

2

5

2


>c=[3 1; 2 9]

c =

3 2

1 9


>d=[1 2; 3 4; 5 6]'

d =

1 3 5

2 4 6

>t=[-1 0 1 3 5]' ; A=[t.^0 t.^2 t.^t]

A =

1 1 -1

1 0 1

1 1 1

1 9 27

1 25 3125

>x=[-1 1 2]; B=[x; 2.^x]'

B =

-1.00000 0.50000

1.00000 2.00000

2.00000 4.00000

>y=[7 8 9]' * [4 5 6]

y =

28 35 42

32 40 48

36 45 54

>z=[4 5 6]*[7 8 9]'

z = 122

>C=[-4 5; 1 2]*[3; 5]

C =

13

13


Ajuste de curvas

considerar el ajuste de la función f(x)=exp(3x-x^2) por un polinomio

p(x)=a_0+a_1x+a_2x^2+...a_nx^n

de grado n=4 en los puntos x_i=i,i=-3,-2,-1,...,2,3

Formular el sistema de ecuaciones, que corresponde al ajuste de la funcion f(x) por el polinomio

p(-3)=a_0 -a_13+a_29-a_327+a_481=exp(-18)

p(-2)=a_0 -a_12 +a_24 -a_38 +a_416 =exp(-10)

p(-1)=a_0 -a_1 +a_2 -a_3 +a_4 =exp(-4)

p(0)=a_0=1

p(1)=a_0 -a_1 +a_2 -a_3 +a_4 =exp(2)

p(2)=a_0 -a_12 +a_24 -a_38 +a_416 =exp(2)

p(3)=a_0 -a_13 +a_29 -a_327 +a_481 =1

Escribir el sistema de ecuaciones lineales en forma matricial Xa=y


\begin{pmatrix}
1 & 3 & 9 & -27 & 81\\
1 & -2 & 4 & -8 & 16\\
1 & -1 & 1 & -1 & 1\\
1 & 0 & 0 & 0 & 0\\
1 & 2 & 4 & 8 & 16\\
1 & 3 & 9 & 27 & 81
\end{pmatrix}
*
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
a_4
\end{pmatrix}
=
\begin{pmatrix}
exp(-18)\\
exp(-10)\\
exp(-4)\\
1\\
exp(2)\\
exp(2)\\
1
\end{pmatrix}

Formular las ecuaciones normales para el ejemplo

[X^TX]a=[X^Ty]

\begin{pmatrix} 
1  &  1 & 1 & 1 & 1 & 1 & 1\\

-3 & -2 & -1 & 0 & 1 & 2 & 3\\

9 & 4 & 1 & 0 & 1 & 4 & 9\\

-27 & -8 & -1 & 0 & 1 & 8 & 27\\

81 & 16 & 1 & 0 & 1 & 16 & 81
\end{pmatrix}
*
\begin{pmatrix}
1 & 3 & 9 & -27 & 81\\
1 & -2 & 4 & -8 & 16\\
1 & -1 & 1 & -1 & 1\\
1 & 0 & 0 & 0 & 0\\
1 & 2 & 4 & 8 & 16\\
1 & 3 & 9 & 27 & 81
\end{pmatrix}
*
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
a_4
\end{pmatrix}
=
\begin{pmatrix}
exp(-18)\\
exp(-10)\\
exp(-4)\\
1\\
exp(2)\\
exp(2)\\
1
\end{pmatrix}
*
\begin{pmatrix}
1  &  1 & 1 & 1 & 1 & 1 & 1\\

-3 & -2 & -1 & 0 & 1 & 2 & 3\\

9 & 4 & 1 & 0 & 1 & 4 & 9\\

-27 & -8 & -1 & 0 & 1 & 8 & 27\\

81 & 16 & 1 & 0 & 1 & 16 & 81
\end{pmatrix}

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.

También en FANDOM

Wiki al azar